Short Circuit Current Calculation (Base KVA Method)
Example:
Calculate Fault current at each stage of following Electrical System SLD having details of.
- Main Incoming HT Supply Voltage is 6.6 KV.
- Fault Level at HT Incoming Power Supply is 360 MVA.
- Transformer Rating is 2.5 MVA.
- Transformer Impedance is 6%.
Calculation:
- Let’s first consider Base KVA and KV for HT and LT Side.
- Base KVA for HT side (H.T. Breaker and Transformer Primary) is 6 MVA
- Base KV for HT side (H.T. Breaker and Transformer Primary) is 6.6 KV
- Base KVA for LT side (Transformer Secondary and down Stream) is 2.5 MVA
- Base KV for LT side (Transformer Secondary and down Stream) is 415V
Fault Level at HT Side (Up to Sub-station):
(1) Fault Level from HT incoming Line to HT Circuit Breaker
- HT Cable used from HT incoming to HT Circuit Breaker is 5 Runs , 50 Meter ,6.6KV 3 Core 400 sq.mm Aluminum Cable , Resistance of Cable 0.1230 Ω/Km and Reactance of Cable is0.0990 Ω/Km.
- Total Cable Resistance(R)= (Length of Cable X Resistance of Cable) / No of Cable.
- Total Cable Resistance=(0.05X0.1230) / 5
- Total Cable Resistance=0.001023 Ω
- Total Cable Reactance(X)= (Length of Cable X Reactance of Cable) / No of Cable.
- Total Cable Reactance=(0.05X0.0990) / 5
- Total Cable Reactance =0.00099 Ω
- Total Cable Impedance (Zc1)=√(RXR)+(XxX)
- Total Cable Impedance (Zc1)=0.0014235 Ω——–(1)
- U Reactance at H.T. Breaker Incoming Terminals (X Pu)= Fault Level / Base KVA
- U Reactance at H.T. Breaker Incoming Terminals (X Pu)= 360 / 6
- U. Reactance at H.T. Breaker Incoming Terminals(X Pu)= 0.01666 PU——(2)
- Total Impedance up to HT Circuit Breaker (Z Pu-a)= (Zc1)+ (X Pu) =(1)+(2)
- Total Impedance up to HT Circuit Breaker(Z Pu-a)=0.001435+0.01666
- Total Impedance up to HT Circuit Breaker (Z Pu-a)=0.0181 Ω.——(3)
- Fault MVA at HT Circuit Breaker= Base MVA / Z Pu-a.
- Fault MVA at HT Circuit Breaker= 6 / 0.0181
- Fault MVA at HT Circuit Breaker= 332 MVA
- Fault Current = Fault MVA / Base KV
- Fault Current = 332 / 6.6
- Fault Current at HT Circuit Breaker = 50 KA
(2) Fault Level from HT Circuit Breaker to Primary Side of Transformer
- HT Cable used from HT Circuit Breaker to Transformer is 3 Runs , 400 Meter ,6.6KV 3 Core 400 sq.mmAluminium Cable , Resistance of Cable 0.1230 Ω/Km and Reactance of Cable is0.0990 Ω/Km.
- Total Cable Resistance(R)= (Length of Cable X Resistance of Cable) / No of Cable.
- Total Cable Resistance=(0.4X0.1230) / 3
- Total Cable Resistance=0.01364 Ω
- Total Cable Reactance(X)= (Length of Cable X Reactance of Cable) / No of Cable.
- Total Cable Reactance=(0.4X0.0990) / 5
- Total Cable Reactance =0.01320 Ω
- Total Cable Impedance (Zc2)=√(RXR)+(XxX)
- Total Cable Impedance (Zc2)=0.01898 Ω——–(4)
- U Impedance at Primary side of Transformer (Z Pu)= (Zc2 X Base KVA) / (Base KV x Base KVx1000)
- U Impedance at Primary side of Transformer (Z Pu)= (0.01898X6) /(6.6×6.6×1000)
- U Impedance at Primary side of Transformer (Z Pu)= 0.0026145 PU——(5)
- Total Impedance(Z Pu)=(4) + (5)
- Total Impedance(Z Pu)=0.01898+0.0026145
- Total Impedance(Z Pu)=0.00261——(6)
- Total Impedance up to Primary side of Transformer (Z Pu-b)= (Z Pu)+(Z Pu-a) =(6)+(3)
- Total Impedance up to Primary side of Transformer (Z Pu-b)= 0.00261+0.0181
- Total Impedance up to Primary side of Transformer (Z Pu-b)=0.02070 Ω.—–(7)
- Fault MVA at Primary side of Transformer = Base MVA / Z Pu-b.
- Fault MVA at Primary side of Transformer = 6 / 0.02070
- Fault MVA at Primary side of Transformer = 290 MVA
- Fault Current = Fault MVA / Base KV
- Fault Current = 290 / 6.6
- Fault Current at Primary side of Transformer = 44 KA
(3) Fault Level from Primary Side of Transformer to Secondary side of Transformer:
- Transformer Rating is 2.5 MVA and Transformer Impedance is 6%.
- % Reactance at Base KVA = (Base KVA x % impedance at Rated KVA) / Rated KVA
- % Reactance at Base KVA = (2.5X6)/2.5
- % Reactance at Base KVA =6%
- U. Reactance of the Transformer(Z Pu) =% Reactance /100
- U. Reactance of the Transformer(Z Pu)= 6/100=0.06 Ω—–(8)
- Total P.U. impedance up to Transformer Secondary Winding(Z Pu-c)=(Z Pu)+(Z Pu-b)=(7)+(8)
- Total P.U. impedance up to Transformer Secondary Winding(Z Pu-c)=0.06+0.02070
- Total P.U. impedance up to Transformer Secondary Winding(Z Pu-c)=0.0807 Ω—–(9)
- Fault MVA at Transformer Secondary Winding = Base MVA / Z Pu-c
- Fault MVA at Transformer Secondary Winding = 2.5/0.0807
- Fault MVA at Transformer Secondary Winding =31 MVA
- Fault Current = Fault MVA / Base KV
- Fault Current = 31 / (1.732×0.415)
- Fault Current at Transformer Secondary Winding = 43 KA
Fault Level at LT Side (Sub-station to Down stream):
(4) Fault Level from Transformer Secondary to Main LT Panel
- LT Cable used from Transformer Secondary to Main LT Panel is 13 Runs , 12 Meter , 1KV, 3.5C x 400 Sq.mmAluminium Cable , Resistance of Cable 0.1230 Ω/Km and Reactance of Cable is0.0618 Ω/Km.
- Total Cable Resistance(R)= (Length of Cable X Resistance of Cable) / No of Cable.
- Total Cable Resistance=(0.012X0.1230) / 13
- Total Cable Resistance=0.00009 Ω
- Total Cable Reactance(X)= (Length of Cable X Reactance of Cable) / No of Cable.
- Total Cable Reactance=(0.012X0.0618) / 13
- Total Cable Reactance =0.00006 Ω
- Total Cable Impedance (Zc3)=√(RXR)+(XxX)
- Total Cable Impedance (Zc3)=0.00011 Ω——–(10)
- U Impedance at Main LT Panel (Z Pu)= (Zc3 X Base KVA) / (Base KV x Base KVx1000)
- U Impedance at Main LT Panel (Z Pu)= (0.00011X2.5×1000)/(0.415×0.415X1000)
- P P.U Impedance at Main LT Panel (Z Pu)= 001601 Ω ——(11)
- Total Impedance up to Main LT Panel (Z Pu-d)= (Zc3)+ (Z Pu-c) =(11)+(9)
- Total Impedance up to Main LT Panel (Z Pu-d)= 0.001601 +0.0807
- Total Impedance up to Main LT Panel (Z Pu-d)=0.082306 Ω.——(12)
- Fault MVA at Main LT Panel = Base MVA / Z Pu-a.
- Fault MVA at Main LT Panel = 2.5 / 0.082306
- Fault MVA at Main LT Panel = 30 MVA
- Fault Current = Fault MVA / Base KV
- Fault Current = 30 / (1.732X0.415)
- Fault Current at Main Lt Panel = 42 KA
(5) Fault Level from Main LT Panel to Sub Panel:
- LT Cable used from Main LT Panel to Sub Panel is 2 Runs , 160 Meter , 1KV, 3.5C x 400 Sq.mm Aluminium Cable , Resistance of Cable 0.1230 Ω/Km and Reactance of Cable is0.0618 Ω/Km.
- Total Cable Resistance(R)= (Length of Cable X Resistance of Cable) / No of Cable.
- Total Cable Resistance=(0.160X0.1230) / 2
- Total Cable Resistance=0.008184 Ω
- Total Cable Reactance(X)= (Length of Cable X Reactance of Cable) / No of Cable.
- Total Cable Reactance=(0.160X0.0618) / 2
- Total Cable Reactance =0.004944 Ω
- Total Cable Impedance (Zc4)=√(RXR)+(XxX)
- Total Cable Impedance (Zc4)=0.0095614 Ω——–(13)
- U Impedance at Sub Panel (Z Pu)= (Zc4 X Base KVA) / (Base KV x Base KVx1000)
- U Impedance at Sub Panel (Z Pu)= (0.0095614 X2.5×1000)/(0.415×0.415X1000)
- P P.U Impedance at Sub Panel (Z Pu)= 13879 Ω ——(14)
- Total Impedance up to Sub Panel (Z Pu-e)= (Zc4)+ (Z Pu-d) =(14)+(12)
- Total Impedance up to Sub Panel (Z Pu-e)= 0.13879 +0.082306
- Total Impedance up to Sub Panel (Z Pu-e)=0.2211 Ω.——(15)
- Fault MVA at Sub Panel = Base MVA / Z Pu-a.
- Fault MVA at Sub Panel = 2.5 / 0.2211
- Fault MVA at Sub Panel = 11 MVA
- Fault Current = Fault MVA / Base KV
- Fault Current = 11 / (1.732X0.415)
- Fault Current at Sub Panel = 16 KA
(6) Fault Level from Sub Panel to Motor Control Panel:
- LT Cable used from Sub Panel to Motor Control Panel is 6 Runs , 150 Meter , 1KV, 3.5C x 400 Sq.mm Aluminium Cable , Resistance of Cable 0.1230 Ω/Km and Reactance of Cable is0.0739 Ω/Km.
- Total Cable Resistance(R)= (Length of Cable X Resistance of Cable) / No of Cable.
- Total Cable Resistance=(0.150X0.1230) / 6
- Total Cable Resistance=0.003075 Ω
- Total Cable Reactance(X)= (Length of Cable X Reactance of Cable) / No of Cable.
- Total Cable Reactance=(0.150X0.0739) / 6
- Total Cable Reactance =0.0018475 Ω
- Total Cable Impedance (Zc5)=√(RXR)+(XxX)
- Total Cable Impedance (Zc4)=0.003587 Ω——–(16)
- U Impedance at Motor Control Panel (Z Pu)= (Zc5 X Base KVA) / (Base KV x Base KVx1000)
- U Impedance at Motor Control Panel (Z Pu)= (0.003587 X2.5×1000)/(0.415×0.415X1000)
- P P.U Impedance at Motor Control Panel (Z Pu)= 05207 Ω ——(17)
- Total Impedance up to Motor Control Panel (Z Pu-f)= (Zc5)+ (Z Pu-e) =(17)+(15)
- Total Impedance up to Motor Control Panel (Z Pu-e)= 0.13879 +0.2211
- Total Impedance up to Motor Control Panel (Z Pu-e)=0.27317 Ω.——(15)
- Fault MVA at Motor Control Panel = Base MVA / Z Pu-a.
- Fault MVA at Motor Control Panel = 2.5 / 0.27317
- Fault MVA at Motor Control Panel = 9 MVA
- Fault Current = Fault MVA / Base KV
- Fault Current = 9 / (1.732X0.415)
- Fault Current at Motor Control Panel = 13 KA
Summary of Calculation:
Sr.No | Fault Location | Fault MVA | Fault Current (KA) |
1
| At HT Circuit Breaker |
332
|
50
|
2
| At Primary Side of Transformer |
290
|
44
|
3
| At Secondary Side of Transformer |
31
|
43
|
4
| At Main LT Panel |
30
|
42
|
5
| At Sub Main Panel |
11
|
16
|
6
| At Motor Control Panel |
9
|
13
|
You mentioned in your blog about #ShortCircuitStudy is very nice to gain more knowledge about Short Circuit Analysis. Electrical Short circuit is a highly dangerous phenomenon in any utility. When it comes to oil rigs the risk is much more higher. We at VB engineering provides an expertise consultancy in performing or short circuit analysis for oil rigs as per ANSI/IEEE and IEC standards. If you want to know more about the Relay Coordination, Please Visit, Short Circuit Analysis
ReplyDeletethank you sir, the beauty of sharing,
DeleteRegards,
Dunia Electrical
pak, boleh disharing software short circuit calculationnya. terimakasih
ReplyDeleteitu sudah termasuk perhitungannya buk.
DeleteIf you want further details about the device or have any particular specification, tell our executives. Drop your email or make a direct contact via phone call.
ReplyDeleteMobile No. : +91 9818292266
Electrical Panel Manufacturers